A Prediction Model with a Combination of Variables for Diagnosis of Lung Cancer
نویسندگان
چکیده
BACKGROUND Multivariate models with a combination of variables can predict disease more accurately than a single variable employed alone. We developed a logistic regression model with a combination of variables and evaluated its ability to predict lung cancer. MATERIAL AND METHODS The exhaled breath from 57 patients with lung cancer and 72 healthy controls without cancer was collected. The VOCs of exhaled breath were examined qualitatively and quantitatively by a novel electronic nose (Z-nose4200 equipment). The VOCs in the 2 groups were compared using the Mann-Whitney U test, and the baseline data were compared between the 2 groups using the chi-square test or ANOVA. Variables from VOCs and baseline data were selected by stepwise logistic regression and subjected to a prediction model for the diagnosis of lung cancer as combined factors. The receiver operating characteristic (ROC) curve was used to evaluate the predictive ability of this prediction model. RESULTS Nine VOCs in exhaled breath of lung cancer patients differed significantly from those of healthy controls. Four variables - age, hexane, 2,2,4,6,6-pentamethylheptane, and 1,2,6-trimethylnaphthalene - were entered into the prediction model, which could effectively separate the lung cancer samples from the control samples with an accuracy of 82.8%, a sensitivity of 76.0%, and a specificity of 94.0%. CONCLUSIONS The profile of VOCs in exhaled breath contained distinguishable biomarkers in the patients with lung cancers. The prediction model with 4 variables appears to provide a new technique for lung cancer detection.
منابع مشابه
Prediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)
Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملThe Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model
Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...
متن کاملThe prediction of lymphedema via the combination of the selected data mining algorithms
Background: Breast cancer is the second leading cause of cancer death in women, after lung cancer. Due to the importance of predicting this disease, the use of data mining methods in medical research is more significant than before. Data mining algorithms can be a great help in preventing the development of lymphedema in patients. The aim Of this study was to create a diagnosis system that can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 23 شماره
صفحات -
تاریخ انتشار 2017